Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci Technol ; 57(12): 4697-4706, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33087980

RESUMO

ABSTRACT: This study dealt with the fabrication of an impedimetric biosensor based on nanomaterial modified with pencil graphite electrode for the detection of tetracycline (TET) in milk samples. For response of the impedimetric aptasensor to be improved, the influence of different parameters (immobilization time of reduced grapheme oxide, time of aptamer, and TET binding, and concentration of aptamer) was optimized. In optimum conditions, the aptasensor provided a concentration range within 1 × 10-16 - 1 × 10-6 M and with a limit of detection of 3 × 10-17 M TET. The proposed impedimetric aptasensor was then used in milk samples analysis, and the acceptable recovery was achieved ranging from 92.8 to 102.1%. According to this study, the combination of an aptamer and electrochemical impedance spectroscopy is a promising method for detection of TET in milk samples with high reproducibility and stability.

2.
Food Sci Nutr ; 8(2): 870-883, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32148796

RESUMO

One of the nonthermal methods is the atmospheric pressure cold plasma (APCP). In this study, the effect of cold plasma on the reduction of Escherichia coli bacteria and qualitative properties of sour cherry juice, including total phenolic content (TPC), total anthocyanin content (TAC), and vitamin C, were investigated. Independent variables included plasma exposure time (1, 5, and 9 min), applied field intensity (25, 37.5, and 50 kV/cm), feeding gas oxygen content (0%, 0.5%, and 1%), and sample depth (0.5, 1, and 1.5 cm). The results show that increased oxygen content in argon has the greatest effect on the reduction of bacteria, and plasma exposure decreased 6 logarithmic periods of E. coli bacteria in sour cherry juice. Optimization results showed when all bacteria were eliminated by plasma, TPC remained unchanged, and TAC and vitamin C decreased by 4% and 21%, respectively, while thermal methods increased TPC by 23% and decreased TAC and vitamin C by 26% and 77%, respectively. These results indicate that, compared with conventional thermal methods, sour cherry juice pasteurization using APCP has little effect on the juice qualitative properties, and this method can serve as a suitable alternative to conventional thermal methods.

3.
Mikrochim Acta ; 186(6): 372, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31123905

RESUMO

The authors describe an impedimetric aptasensor for Penicillin G (PEN) which is an important antibiotic. The method is based on the use of a pencil graphite electrode (PGE) modified with reduced graphene oxide (RGO) and gold nanoparticles (GNPs) for ultrasensitive detection of PEN. The morphology of a bare PGE, RGO/PGE, and GNP/RGO/PGE, and the functional groups on graphene oxide (GO) and RGO were studied using scanning electron microscopy and Fourier transform infrared spectroscopy. Electrochemical impedance spectroscopy was used for detection of PEN by measuring the charge transfer resistance (Rct). Also, cyclic voltammetry was recorded at potential range of 0.30 to +0.70 V for PGE treatment. This aptamer-based assay has a wide linear range that extends from 1.0 fM to 10 µM, and a limit of detection as low as 0.8 fM. The method was applied to the determination of PEN in spiked milk from cow, sheep, goat and water buffalo. Recoveries ranged from 92% to 104%. The assay is fast, ultrasensitive, high reproducible, and selective over antibiotics such as streptomycin, tetracycline, and sulfadiazine. Graphical abstract Schematic presentation of an impedimetric aptasensor for Penicillin G antibiotic using a pencil graphite electrode (PGE) modified with reduced graphene oxide (RGO) and gold nanoparticles (GNPs). This aptamer based assay has limit of detection as low as 0.8 fM.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Contaminação de Alimentos/análise , Grafite/química , Nanopartículas Metálicas/química , Penicilina G/análise , Animais , Búfalos , Bovinos , DNA/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Cabras , Ouro/química , Limite de Detecção , Leite/química , Penicilina G/química , Reprodutibilidade dos Testes , Ovinos
4.
Iran J Pharm Res ; 17(Suppl2): 146-160, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31011349

RESUMO

Since the rose water is used in food, pharmaceutical, and cosmetic products, its microbiological control is necessary. Conventional pasteurization methods cause undesirable changes in taste, smell, medicinal properties and nutritional value with decreasing the amount of essential oil, because of high temperatures. In this study, the effects of the microwave power, temperature, ultrasound power, and ultrasonic exposure were evaluated during rose water pasteurization process on its chemical compositions and E. coli content. In order to determine the microbial inactivation by microwave and ultrasound, E. coli at a concentration of 2 × 106 per mL was inoculated to rose aromatic water. The results showed that each variable on the inactivation of E. coli and energy consumption per microbial reduction cycle had a significant effect. The optimum values of microwave power, temperature, ultrasound power, and ultrasound exposure time were obtained 326.24 W, 43.32 °C, 100 W and 4 min, respectively. The chemical composition assessment was done by GC/MS analysis. Phenethyl alcohol is one of the main components of rose water which was completely lost in the conventional pasteurization method, while in pasteurization process by combined method, it showed an acceptable decrease as compared with raw rose water. Furthermore, the proposed method caused minimal changes in the chemical compositions of the rose water as compared to the conventional heating methods.

5.
J Food Sci Technol ; 53(1): 88-103, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26787934

RESUMO

Conventional pasteurization treatments often lead to substantial decrease in fruits juice quality. Due to these issues, the objective of this research was to compare the combined effect of a novel thermal (microwave) and non-thermal (ultrasonic) treatments with conventional thermal pasteurization on some qualitative characteristics of sour cherry juice (vitamins, phenolics, anthocyanins, etc.). For this purpose, an automatic control system comprising of ultrasonic generator, ultrasonic transducer, horn, pump, circulator, microwave oven, container, pipe interface, temperature sensor, float, data acquisition card, microwave power control circuit, and reactor was designed and developed. Moreover, in order to optimize the effect of ultrasonic waves on the existing micro-organisms in the sour cherry juice, some preliminary experiments were carried out to optimize the ultrasonic probe and reactor design. The results of evaluations showed that using the combined automatic system, the qualitative properties of sour cherry (vitamin C content 14 %, total phenolics content 1 %, total anthocyanins content 6 %) can be better maintained compared with the conventional thermal method. Based on the results obtained in this study, the following processing conditions: microwave power of 541.7 W, temperature of 41 °C, ultrasonic power of 799.57 W and ultrasonic exposure time of 6 min were recommended for optimum processing of sour cherry juice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...